
RISC-V SoC Hardware
Vulnerability Detection Toolset

Team 41:
Mason Korkowski, Micah Mundy, Gerald Edeh, Kolton Keller, Eva Kohl, Savva Zeglin, & Magnus Anderson

Client/Advisor: Henry Duwe

Project Vision: Simplify Hardware Debugging

● Project: Hardware Vulnerability Analysis Toolkit

● More advanced processors → higher complexity → more vulnerabilities

● Use cases
○ Hardware CTF participants and Test engineers: first line of attack
○ Computer hardware developers: first line of defense

What is HACK@DAC and Why is it Important?

● Hardware Capture the Flag (CTF) event
○ Teams compete to detect bugs in a provided, flawed SoC design
○ Encourage creation of automated bug finding tools
○ Extra incentive to exploit the vulnerabilities that are detected

● Our Project
○ Specific focus on HACK@DAC competition
○ Following all competition rules

Source: https://hackatevent.org/

https://hackatevent.org/

Goal: Develop a tool-set for hardware debugging.

● User groups: HACK@DAC participants and SoC developers

● Reduce the time and complexity of debugging RISC-V SoC Hardware.

● Approach: Create a toolset that decreases the time and effort needed to
detect and exploit bugs by automatically finding issues in given RTL code

HACK@DAC provided SoCs

2018 SoC

● Past competition
● Provided:

○ Buggy and clean versions of SoC
○ Comprehensive list of bugs

2021 SoC

● Ongoing competition
● Provided:

○ Buggy SoC

https://docs.google.com/spreadsheets/d/1fcpJHAmYbfWzrVyBpebDnIUiYFohVU-G/edit?usp=sharing&ouid=102151251018947909307&rtpof=true&sd=true

System Overview

● Who?
○ HACK@DAC competitors
○ RTL Verification Engineers
○ RTL Designers

● What?
○ Signal Tracing
○ Linting
○ Bug Detecting

● Why?
○ Open Source
○ Not reliant on Simulators

Summary of Requirements
End Deliverable: Suite of tools intended to find hardware-induced
vulnerabilities in System-on-Chips (SoCs) from their RTLs

● Functional:
○ Tool Specifications:

■ Automatically find vulnerabilities, or give the user necessary
information to manually find them

■ Accessible via a command line interface
■ Responsive: continuous, instantaneous feedback

● Non-Functional:
○ Hardware requirements: one laptop (4 cores, 16GB RAM)
○ Usable by someone with intermediate knowledge of hardware design

● Constraint: Operate according to HACK@DAC standards and rules

Conceptual Design Diagram

Program Flow
● User Input

○ Signal Names
○ File paths

● External Tools
○ SVLint
○ Verible Lexer

● Signal Tracing
○ Dependency tree building
○ Directory discovery

● Bug Classification

● Individual Bug Detectors
○ Signals that do not change
○ Address Overlaps
○ Missing Default Cases

● What it does
○ Finds potential warnings/errors in RTL
○ Determines which are of concern

● Why we need it
○ Use errors from SVLint to find potential bug locations
○ Narrow down errors provided by SVLint

● How it works
○ Input RTL into SVLint
○ Additional logic to trim output of SVLint

■ Determine which issues have a high likelihood of
being bugs that we can detect

Linting Component

Signal Tracer Component
● What it does

○ Builds hierarchy of modules in SoC design
○ Given a signal builds a dependency tree

● Why we need it
○ Bugs often rely/exist because of signals across

multiple modules
○ Parsing System Verilog manually is difficult, however

it is less difficult and quicker than a compilation tool
● How it works

○ Use Verible to generate tokens which we then parse
○ Build a module dependency tree
○ Hardware equivalent of a software call stack can

then be created for any signal in the SoC

Bug Detection Tools

● Collection of tools that are based on the Signal Tracer Component
● Will be used to find bugs of specific categories

○ Initial bug categories/types we have chosen to attempt to detect
■ Signals That Never Change
■ Memory Address Overlap
■ Missing Default Case Statements

● Output:
○ Depending on type of bug:

■ Template exploit program
■ Where/how to set related signal
■ Other useful information for exploiting the bug

Prototype Implementation (Bug Detection)

1. Input 2018 HACK@DAC SoC into SVLint

2. SVLint indicates specific line and signal have issue:

This corresponds to bug 14 from the 2018 bug list

Prototype Implementation (Bug Exploitation)

3. Build a dependency tree of the 2018
SoC verilog modules provided a root file

4. Trace the signal found by the linter until
it is eventually given a value.

Prototype Implementation (Bug Exploitation)

5. After tracing the signal alu_vec_mode
is set to VEC_MODE32 when the
processor is reset.

6. The Initial case statement did not have
a case for VEC_MODE32, picked out by
the linter

7. By resetting, then immediately using an
instruction, such as ABS (an instruction
that does not set VEC_MODE) the ALU
enters an undefined state.

Design Complexity

● Challenges in development
○ Dependences of the 2018 SoC made it difficult to simulate
○ Lack of experience in complex hardware among team members made for a steeper

learning curve.
○ Open-ended Scope

● Challenges in the design
○ One of the challenges in the design is exploiting a bug in the design.
○ To address this challenge, the agile project development model is used.

Project Plan

Major Milestones: Associated Risks / Mitigation Strategies:

Categorize bugs from 2018 HACK@DAC
SoC

Initial categorization may be inaccurate. Bugs may need to be
re-categorized later based on new knowledge gained through Agile
process.

Run programs on simulated 2018/2021 SoCs 2018 SoC has been unmaintained for years. Could inject similar bugs into
more recent designs, or use 2021 SoC bugs for verification.

Create static analysis toolset to find bugs High complexity could lead to low accuracy for tools.
Attempt to keep tools as generic and frequently reassess our goals
through Agile development.

Use tools to detect/exploit bugs SoCs Highly dependent on all milestones above. Adhering to above risk
mitigation strategies will be crucial for mitigating the risk of this task.

Develop new approaches to find bugs We don’t yet know which methods will be reasonable. Rapid research and
prototyping will help us quickly reach a sensible set of solutions.

Project Plan – Schedule/Milestones

Goal Fit Criteria Timeline
Categorize known bugs Fit all bugs into at least one category This Semester Weeks 4-8

Run programs on the simulated 2018
HACK@DAC SoC

At least one by the end of the Fall 2021
semester

This Semester Week 8-14

Run programs on the simulated 2021
HACK@DAC SoC

At least one by the end of the Fall 2021
semester

This Semester Week 4-6

Create static analysis toolset to find bugs
(see next milestone for evaluation metric)

At least 3 different categories of bug
detectable with at least 50% accuracy

Next Semester Weeks 2-12
(individual tools done in sprints of two
weeks)

Generate concepts for new approaches
to finding bugs in SoC designs

At least one, well documented, new
approach

Next Semester Weeks 2-12

Using assistance of static analysis tools,
detect and exploit bugs in each of the
2018 and 2021 SoCs

At least one bug from each SoC Next Semester Weeks 4-12

Test Plan
Unit Testing: Each tool will be individually tested by injecting vulnerabilities

into processor designs.

Interface Testing:

● The interface between the parsing core and the RTL

● The interface between the tools and user.

Integration Testing: Between the parsing core and the tools.

System Testing: Testing each module individually

Regression Testing: New bug detection tools will not
break others

Acceptance Testing: Final Design will be evaluated
based on the requirements.

Measure Of Success: The proportion of
HACK@DAC bugs our tools can locate. Extra
successful if we can use tool output to exploit bugs.

Current Progress and Future Plans
Done this Semester

● Identified/classified bugs
● Explored and identified helpful open source software
● Proof of concept prototypes for the backbone of the toolset (Signal

tracing, linting)

Plan for Next Semester

● Perfect Signal Tracing/Linting Components
● Develop and test tools for:

○ Missing Case Statements
○ Signals That Never Change
○ Memory Address Overlaps

● Use above tools to detect/exploit bugs

Questions?

