
RISC-V SoC Hardware
Vulnerability Detection Toolset

DESIGN DOCUMENT

Team 41

Mason Korkowski
Micah Mundy
Gerald Edeh
Kolton Keller

Eva Kohl
Savva Zeglin

Magnus Anderson

Client/Advisor: Henry Duwe

sdmay22-41@iastate.edu
https://sdmay22-41.sd.ece.iastate.edu/docs.html

Revised: 12/08/2021 v3

https://sdmay22-41.sd.ece.iastate.edu/docs.html

Executive Summary
Systems on Chip’s (SoC’s) are largely increasing in popularity as pervasive technology. As

the popularity increases, so does the complexity, size, and scales. With larger designs comes the
challenge of testing and verification to ensure there are not any system critical bugs that can lead to
security vulnerabilities. The goal of our project is to develop a suite of tools to aid a developer in the
detection and exploitation of bugs in Register Transfer Level (RTL) designs.

Similar to software Capture the Flag (CTF) competitions to find vulnerabilities in software
systems, hardware CTF events also exist. One of these competitions is the HACK@DAC
competition. The primary objective of these CTF events is to encourage the creation of automated
tools that can detect and exploit security vulnerabilities. These competitions ideally promote SoC
designs to become more robust as these competitions lead to the development of tools--often
open-sourced--that can help cybersecurity and RTL designers test their designs. This early testing
and detection is important in the hardware industry as it could save billions of dollars system
critical bugs are found before the design is fabricated as an Application Specific Integrated Circuit
(ASIC).

Due to the scale and complexity of finding all bugs in all hardware SoC designs, we decided
to limit our scope. For our design, we are specifically focusing on aiding participants of the
HACK@DAC hardware CTF competitions. In doing so we opted to follow all the rules set forth by
the competition. We have chosen to base our project on this competition since it provides a testing
environment for our design. After the completion of previous competitions, detailed lists of any
past bug found were released. These lists give a strong foundation for testing our tools to verify
their effectiveness. The HACK@DAC competition heavily rewards teams who can exploit the bugs
as well as detect them, so our project also includes a focus on providing assistance with exploiting
our detected bugs.

1

Table of Contents
Executive Summary 1

Table of Contents 2

Summary of Requirements 4

1 Team 5

1.1 Team Members 5

1.2 Required Skill Sets for Your Project 5

1.3 Skill Sets covered by the Team 6

1.4 Project Management Style Adopted by the team 6

2 Introduction 7

2.1 Problem Statement 7

2.2 Requirements & Constraints 7

2.2.1 Functional Requirements 7

2.2.2 Nonfunctional Requirements 8

2.2.3 Constraints 8

2.3 Engineering Standards 9

2.4 Intended Users and Uses 9

3 Project Plan 10

3.1 Project Management/Tracking Procedures 10

3.2 Task Decomposition 10

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 11

3.4 Project Timeline/Schedule 11

3.5 Risks And Risk Management/Mitigation 12

3.6 Personnel Effort Requirements 13

3.7 Other Resource Requirements 13

4 Design 14

4.1 Design Context 14

4.1.1 Broader Context 14

4.1.2 User Needs 14

2

4.1.3 Prior Work/Solutions 14

4.1.4 Technical Complexity 15

4.2 Design Exploration 15

4.2.1 Key Design Decisions 15

4.2.2 Ideation 16

4.2.3 Decision-Making and Trade-Off 16

4.3 Proposed Design 17

4.3.1 Design Visual and Description 18

4.3.2 Functionality 19

4.3.3 Areas of Concern and Development 20

4.4 Technology Considerations 20

4.5 Design Analysis 21

4.6 Design Plan 21

5 Testing 22

5.1 Unit Testing 22

5.2 Interface Testing 22

5.3 Integration Testing 22

5.4 System Testing 22

5.5 Regression Testing 22

5.6 Acceptance Testing 23

5.7 Results 23

6 Implementation 23

7 Professionalism 24

7.1 Project Specific Professional Responsibility Areas 24

7.2 Most Applicable Professional Responsibility Area 25

8 Closing Material 26

8.1 Discussion 26

8.2 Conclusion / Steps Taken So Far 26

8.3 References 27

8.4 Appendices 27

3

Summary of Requirements
● The product will be a suite of tools intended to find hardware-induced vulnerabilities in

System-on-Chips (SoCs) from their RTL implementations

● Tools will automatically find vulnerabilities, or give the user necessary information to
manually find them

● These tools will be accessed via command line interface

● These tools will respond to user input, provide status updates, and complete execution
within specified time constraints

● The product will be capable of running on a computer running a VM with 4 cores and 16GB
RAM

● The product will operate according to HACK@DAC standards and rules

● The user will be someone with intermediate knowledge of hardware design

4

1 Team

1.1 TEAM MEMBERS

Mason Korkowski

Micah Mundy

Gerald Edeh

Kolton Keller

Eva Kohl

Savva Zeglin

Magnus Anderson

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

(if feasible – tie them to the requirements)

● Understanding and proficient in Cybersecurity Principles

● Understanding and proficient ability to program in hardware description languages.

● Understanding of SoC design files project structure practices.

● Experience in hardware and software programming best practices.

● Experience with and proficient in git and vsc practices.

● Experience in hardware and software debugging techniques.

● Strong problem solving skills.

● Proficient communication skills.

● Experience with and proficient in basic programing data structures.

● Experienced understanding of basic processor architecture.

● Basic understanding of software architectures.

● Basic understanding of bash and scripting languages.

5

1.3 SKILL SETS COVERED BY THE TEAM

(for each skill, state which team member(s) cover it)

Understanding and proficient in Cybersecurity Principles

● Kolton

Understanding and proficient ability to program in hardware description languages

● Savva, Mason

Understanding of SoC design files project structure practices

● Mason

Experience in hardware and software programming best practices

● All team members

Experience and proficiency in GitLab

● All team members

Experience in hardware hardware and software debugging techniques

● All team members

Strong problem solving skills

● All team members

Good communication skills

● All team members

Experience with and proficient in basic programing data structures

● All team members

Basic understanding of basic processor architecture.

● Savva, Mason, Micah, Kolton

Basic understanding of software architectures.

● Magnus, and Eva

Basic understanding of bash and scripting languages.

● All team members

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Our team will manage our project with an Agile/SCRUM methodology. This will help mitigate risks
during the development process as well as ensure that our end-product is as useful as possible.

6

2 Introduction

2.1 PROBLEM STATEMENT

Increasingly our pervasive technology is being dominated by systems on chips (SoCs).
Unfortunately, the increasing complexity of such designs makes removing hardware bugs and
security vulnerabilities especially challenging. The goal of this project is to construct a tool set
framework that can be used for hardware capture-the-flag competitions such as
https://hackathard.com/hacksec21/. Students will be encouraged to use an agile approach to the
development of the tool set based on publicly-available buggy SoC designs (e.g.,
https://github.com/gdessouky/hackdac_2018_beta) as well as participation in a hardware
capture-the-flag competition.

2.2 REQUIREMENTS & CONSTRAINTS

2.2.1 Functional Requirements

General Toolset

G1. Each tool in the product shall have suggested exploitation options.

Signal Tracing

S1. When the user runs the Signal Tracer tool, the product shall accept the root file of SoC and
name of signal to trace

S2. If the the user gives the Signal Tracer a non root file, the product shall display error
S3. If the user gives an invalid signal name then the product shall display and error message
S4. When the product accepts root file and signal name, then the product shall display the

signal file path to user

Address Overlap

A1. When the user runs the Address Overlap tool, the product shall except a SoC root file
A2. If the user gives a invalid root file then the product shall display an error message
A3. When the product accepts an SoC file, the product shall display line numbers of and

descriptions of potential address overlap locations.
A4. If the product finds no overlaps, then the product shall exit with a success display message.

Missing Default

M1. When the user runs the Missing Default tool, then the product shall except a SoC file
M2. If the user gives an invalid file, then the product shall display an error message
M3. When the product accepts an SoC file, then the product shall display lines with line

numbers where there is a missing case statement.
M4.If the product finds no missing case statements, then the product shall exit cleanly.

7

https://hackathard.com/hacksec21/
https://github.com/gdessouky/hackdac_2018_beta

Unchanging Singal

US1. When the user runs the Unchanging Signal tool, the product shall accept a SoC root
file and a signal name or file from SoC design

US2. If the user inputs an invalid signal name then the product shall display an error
message

US3. If the user inputs an invalid file name then the product shall display an error message
US4. If the user inputs an invalid root file then the product shall display an error message
US5. When the product accepts the root file and file or signal name, then the product shall

display:
a. the signal path
b. values at each point on path
c. Boolean of whether the signal has changed

US6. If off nominal behavior happens during execution within the product, the product shall
display an error message

2.2.2 Nonfunctional Requirements
Look and Feel

LF1. The product shall have some type of command-line user interface, tailored to
hardware/security engineers.

Usability
U1. The product shall be usable within an hour by someone with intermediate knowledge of

hardware design to identify bugs
Performance

P1. The product respond to user input within 1 second on a laptop with 4 cores and 16GB RAM
P2. The product shall provide periodic, detailed status updates and progress reports within 5

seconds
Operational

O1. Tools in the product shall be able to be run on a laptop running a VM with 4 cores and
16GB RAM (constraint)

Maintainability
M1. The project shall have a well documented README or each tool for knowledge transfer

purposes.
Legal

L1. The product will operate according to HACK@DAC standards and rules. (constraint)

2.2.3 Constraints
1 The product shall be completed by May 2022.
2 The product shall be implemented without purchasing anything, such as software licenses.
3 The product shall conform to the rules and regulations of HACK@DAC competitions.

8

2.3 ENGINEERING STANDARDS

2.3.1. IEEE Policies, Section 7: Shall be honest and realistic in stating claims or estimates based
on data.

2.3.1.1. Standard ensures that the team will be honest with the data recorded.
2.3.1.2. Creates a trustworthy environment with the client, as data is sincere.

2.3.2. IEEE Policies, Section 7: Shall treat all persons fairly and not engage in acts of
discrimination

2.3.2.1. Standard ensures that students treat one another with respect and honesty.
2.3.2.2. Creates a safe environment for students to work in, and discuss ideas.

2.3.3. IEEE 1800-2017 : Standard for SystemVerilog
2.3.3.1. Standard for the SystemVerilog Language, This specification lays out the standards

for syntactically correct SystemVerilog code that will need to be parsed for this
project.

2.3.4. IEEE 1212.1-1993 : Standard for Communicating Among Processors and Peripherals Using
Shared Memory (Direct Memory Access - DMA)

2.3.4.1. Standard for DMA use in microarchitectures for communicating between memory
sub modules. May be necessary for detection of bugs in DMA modules.

2.3.5. RISC-V Instruction Set Manual
2.3.5.1. The RISC-V Instruction Set Manual lists all the instructions that are able to be

executed by the RISC-V architecture. This will be very useful when writing test
code for the buggy SoC and it may be used for detection of bugs in the software
portion of the design, such as with input fuzzing tools.

2.3.6. Style guides: enable us to write software that visually appears unified to reduce the time
required for understanding and modifying the code.

2.3.6.1. Google Shell Style Guide

2.4 INTENDED USERS AND USES

Future participants of the HACK@DAC competition benefit from the results of the project. Finding
bugs in a program can be very time consuming and stressful. By using the tool they will be able to
find apparent bugs in the program. Also someone that is using HACK@DAC as practice to improve
their debugging skills will benefit from this tool. In both scenarios, a use case can be using the tools
to assist them when finding bugs. This will give more time to find other bugs in the program.

9

https://google.github.io/styleguide/shellguide.html

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our group is adopting Agile as our project management style. Agile fits our project's goals in that it
allows for flexibility in requirements and scheduling. Because the scope of our project is still being
realized and cemented, we anticipate much change within the implementation of the toolset. Given
the turbulent nature of our project, the agile methodology is essential for success.

We will use GitLab to track our team’s progress. GitLab includes a repository for the software and
tools we develop and an issue tracker to monitor progress. Our primary communication will take
place via Discord.

3.2 TASK DECOMPOSITION

● Categorize bugs into different groups based on what type of tool/method is needed to find
them

○ Determine the security properties that are violated for bug categories
○ Determine the information needed by tools to detect the bugs in each category

● Run programs on the simulated 2018 HACK@DAC SoC
○ Get simulation environment set up
○ Exploit a vulnerability on the SoC

● Run programs on the simulated 2021 HACK@DAC SoC
○ Get simulation environment set up
○ Find a vulnerability in the SoC
○ Exploit a vulnerability on the SoC

● Create static analysis toolset to find bugs (for applicable bug categories)
○ Research open-source static analysis tools for RTL (verilog linters/parsers)
○ Develop or find a tool that can trace signals through the SoC design to aid other

tools
○ Extend the signal tracing tool in order to detect/exploit more specific classes of

bugs (address overlap, missing case statements)
● Using assistance of static analysis tools, detect and exploit a bug in the 2018 and 2021 SoCs
● Generate concepts for new approaches to finding bugs in SoC designs (Agile development,

in coming sprints)
○ Explore alternative design options

10

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

● Categorize known bugs from the HACK@DAC 2018 into different groups based on what
type of tool/method is needed to find them

○ Fit all bugs into at least one category
● Run programs on the simulated 2018 HACK@DAC SoC

○ At least one by the end of the Fall 2021 semester
● Run programs on the simulated 2021 HACK@DAC SoC

○ At least one by the end of the Fall 2021 semester
● Create static analysis toolset to find bugs (see next milestone for evaluation metric)

○ At least 3 different categories of bug detectable with at least 50% accuracy
● Using assistance of static analysis tools, detect and exploit bugs in each of the 2018 and 2021

SoCs
○ At least one bug from each SoC

● Generate concepts for new approaches to finding bugs in SoC designs

3.4 PROJECT TIMELINE/SCHEDULE

11

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Task Risk Probability Mitigation Plan

Bug
categorization

Later in the project,
bugs need to be
re-categorized to fit
with new knowledge or
developments

0.7 When beginning development of a new
tool to identify bugs, revise categories of
bugs as needed. Discuss which bugs the
tool is likely to find and if the bug
categories need to be refined.

Run programs
on the
simulated 2018
HACK@DAC
SoC, a variant
of the popular
Pulpissimo SoC
with injected
vulnerabilities.

This project has been
abandoned for three
years, and it uses
several IP cores that
have been updated
since then.

0.4 The most recent Pulpissimo design can
already be simulated.

Inject similar vulnerabilities into the most
up-to-date Pulpissimo platform.

The list of vulnerabilities in the
HACK@DAC 2021 SoC will be released
sometime in the spring, so that SoC can
eventually be used for verification instead.

Run programs
on the
simulated 2021
HACK@DAC
SoC

No risk. The
competition is ongoing
and there are
instructions available.
We have successfully
completed this task at
this point.

0

Create static
analysis toolset
to find bugs
(for applicable
bug categories)

The tools we create
may be too specialized
for the 2018 and 2021
SoCs. The complexity
needed to create these
tools may be high,
resulting in low
accuracy in bug
detection.

0.6 When creating tools, we plan to keep our
designs as generic as possible, so that the
tools will work on any verilog processor
design. Our Agile project plan will assist in
mitigating the risk of a tool becoming too
complex by frequently re-assessing our
goals and our progress towards those
goals.

Using
assistance of
static analysis
tools, detect
and exploit
bugs in the
2018 and 2021
SoCs

Highly dependent on
success of all previous
tasks. Also dependent
on the tools we create
being accurate and
providing us with
insight on how to
exploit the bugs.

0.8 During the tool development process,
thorough testing will be critical in order to
ensure that the tools are accurate.
Adhering to above risk mitigation
strategies will mitigate most of the risk for
this task.

Generate
concepts for
new
approaches to
finding bugs in
SoC designs

With Agile
development, we don’t
know yet which
categories/types of
bugs will be attainable
to detect.

0.5 Research and rapid prototype
development will be key. Quickly
determining whether detecting/exploiting
a bug type is feasible will be critical to
ensuring that we don’t commit too much
time to an idea that will eventually fail.

12

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Expected Time Explanation/ Textual Reference

Bug
categorization

1-3 weeks
(may need

reassessed)

Spend some time locating each bug in the 2018 SoC and
determining categories that the bugs fit into. Later in the
development of the project, these categories may need to be
revised.

Run programs
on the
simulated 2018
HACK@DAC
SoC

4-6 weeks Have to figure out and learn how to run the emulated programs.
There have been issues with running the program that have
delayed progress. The programs required have changed since
2018, so the

Run programs
on the
simulated 2021
HACK@DAC
SoC

1 week HACK@DAC has provided a very useful instruction manual on
how to set up the 2021 SoC, so this task is simple to complete.

Create static
analysis toolset
to find bugs
(for applicable
bug categories)

13-14 weeks This is one of the main tasks for the project. Through Agile
development, we hope to constantly update our expectations
and quickly produce prototypes for static analysis tools for bug
detecting.

Using
assistance of
static analysis
tools, detect
and exploit
bugs in the
2018 and 2021
SoCs

3-4 weeks Upon completion of each static analysis tool, we will use the
tool’s output to attempt to exploit a detected bug. The difficulty
of this task depends on the quality of the tool and the nature of
the bug that was detected.

Generate
concepts for
new
approaches to
finding bugs in
SoC designs

5-8 weeks Throughout our Agile development process, if a tool is
completed or determined to be a less valuable use of our time,
the design and implementation process can start over again for
a new tool. Depending on how quickly tools are completed or
discarded, the concept generation part of the process may be
repeated many times.

3.7 OTHER RESOURCE REQUIREMENTS
● Google Drive Tools Suite
● Gitlab
● Software IDE(s)
● Questasim / other hardware simulation software
● Virtual machine for simulation, other tasks
● Personal computers for use of above tools and software

13

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Since our project consists of a set of software tools, we have not identified any major public safety,
global, or environmental impacts. However, since a secondary use for our toolset is to find bugs
during the designing/testing process of commercial SoCs, our tool could improve performance and
decrease the amount of development time needed in these areas. This could increase cost
effectiveness for groups designing SoCs.

4.1.2 User Needs

HACK@DAC teams and hardware designers/testers need a toolset that assists them in detecting
bugs in buggy SoC chips because finding bugs manually can be challenging and time consuming for
them.

4.1.3 Prior Work/Solutions

RTL developers frequently need to assess the security of their hardware, but few solutions exist to
assist this process. We currently know of four solutions that are available to us:

1. Verilator
2. Questa Sim
3. Quartus Prime
4. Vivado

Despite their effectiveness, these systems require (1) a significant amount of human labor, (2) a
license, (3) extensive training, and/or (4) several dependencies. In addition, no known tool is
capable of finding every vulnerability in hardware.

To mitigate these issues, we propose a lightweight, open-source toolset that includes an intuitive
interface and installation procedure without the need to compile, synthesize, or simulate RTL. Such
a toolset may identify less vulnerabilities than the industry standard tools, but makes common RTL
analysis procedures faster, more convenient, and more accessible.

14

4.1.4 Technical Complexity

1. Since our project is to find bugs in an SoC, we are using many software engineering and
security principles. Three principles that we are especially interested in: testability,
maintainability, and integrity. The heart of the HACK@DAC competition is that SoC chips
must be testable to find the hardware bugs. There must be methods and systems to identify
bugs in the testing process. The second principle that we are focusing on is maintainability.
Our project must be maintainable in that as SoC chips change and the competition changes
from year to year, our software needs to accommodate those changes. Finally, we want to
have integrity in the code that we produce so that we create a quality solution.

2. Our problem scope contains multiple challenging requirements. As mentioned previously,
detecting and exploiting bugs is a complex and challenging task. In section 4.1.3, we
mention other similar, existing solutions. We intend to produce a design that exceeds these
solutions in a few key ways. First, our project will be simple to install and use. Second, our
design will be open source. And third, our project won’t rely on compiling, synthesizing, or
simulating RTL in order to detect bugs. By adhering to these three properties, our design
will likely be useful in a way that existing tools are not to an audience of HACK@DAC
teams or hardware designers/testers.

4.2 DESIGN EXPLORATION

4.2.1 Key Design Decisions
● How to set up toolset environment (What will the user have to do in order to download

and use the tools)

● Programming Language(s) we will be using to create the tools

● Which open-source software tools that already exist to use as a part of our solution

● Priority order for which methods to use to find bugs in a simulated SoC

● Whether or not we should exploit the bugs we find through simulation

15

4.2.2 Ideation

In order to start developing tools to detect bugs, we must first determine which categories or types
of bugs we think are most worthwhile to detect. We have created a lotus blossom with the
categories of bugs that we have identified from the HACK@DAC 2018 SoC bug list. The categories
are: Address Issue, Reset Errors, Incomplete Logic, Incorrect Logic, Privilege/Accessibility Issue, and
Other.

4.2.3 Decision-Making and Trade-Off

Our team determined four factors that we believe make it worthwhile to attempt to detect bugs
from different categories. Those factors are our estimated ease of detecting the bug types, our
estimated ease of exploiting the bug types, our estimate of the speed at which a program could
detect the bug type, and the relative frequency of similar bugs in the 2018 SoC design.

In the decision matrix below, higher numbers indicate that a bug category is considered by our
team to be more worthwhile to try to detect.

We determined that Address Issue and Incomplete Logic were the most worthwhile categories of
bugs to attempt to detect first.

Additionally, given that the HACK@DAC competition highly rewards the exploitation of found
bugs, we also decided that we would work towards exploiting bugs that our tools can find.

16

Bug Category

Estimated
Ease to
Detect

Estimated
Ease of
Exploitation

Estimated
Detection
Speed

Relative
Frequency of
Similar Bugs
in 2018 SoC Total Score

Address Issue 4 4 4 4 16

Reset Errors 3 3 4 4 14

Incomplete Logic 5 4 4 3 16

Incorrect Logic 2 3 4 5 14

Privilege / Accessibility Issue 2 4 3 3 12

Other 1 2 3 1 7

4.3 PROPOSED DESIGN

Tasks done so far / in progress:

● Classifying Bugs

● Research and use Verilog Parsers/Linters

● In progress: Prototyping Verilog hierarchy builder and signal tracer

● In progress: Simulate HACK@DAC 2018 SoC

○ This SoC is based on the Pulpissimo platform. The current version of this SoC can
be simulated.

● Simulate HACK@DAC 2021 SoC

● In progress: Exploiting a bug from 2018 SoC

17

4.3.1 Design Visual and Description

18

Our design plan features one large-scale signal tracing unit, and several small bug detection tools
that depend on the signal tracing module.

Starting from the top of the diagram, the user will interact with a command line interface. It is
assumed the user understands how to navigate using a command line and has an understanding of
the different commands. Next the user will provide the command line with a few key items, first is
the directory that the design is in, second is the name of the top level verilog or system verilog file,
and third is any signal that needs to be traced.

Once the command has been sent, the external command handler will set up and run the external
tools that we are using for this project. After receiving the output from the external tools, the
Verible lexer and tokenizer is used to create a dependency tree. It provides the tokens from each
file. Using these tokens we are able to find key information about each file such as the module
name and what modules it depends on. Since we can find its dependencies we can build a tree that
lists dependencies. Using this tree and given a signal name, we can then trace the signal throughout
the design. Another external tool that will be used is SVLint, which looks at a Verilog file and
provides any warnings or errors. Since running this linter often provides several hundred errors or
warnings, we need to check if the error is something our tools can detect.

These warnings are passed to a bug classifier that determines if this is a type of bug that we
understand. If it is, we send the relevant signal tracing information as well as the bug error
information to a bug detection tool that is specifically designed to deal with that type of bug. This
tool then will determine the likelihood that the error/warning is an actual problem within the SoC.
If this likelihood is high, the tool will give the user some information to assist in exploiting the bug.
Not all bugs are created equal, so there is no one-size-fits-all solution. Depending on the bug type,
the tools can output a code snippet/template to run on the SoC, information about how to set a
specific signal, or other useful information about the bug.

4.3.2 Functionality

This completed project will be applicable to the scenarios of everyday RTL design evaluation and
HACK@DAC competition participation.

The current design satisfies the functional requirements in that there is a plan and design to
complete each of the four tools listed in the requirements to the necessary performance standard
listed in the nonfunctional requirements. The current plan gives space and encouragement towards
further improving the requirements to meet goals without gold plating or excessive requirements.
The nonfunctional requirements line up with the goal and context of the project and there is time
within the plan for their implementation.

When the product is finished, the developer who chooses to use it will do the following. He will
clone the git repository and read the READMEs to understand the tools given. He will cd into the
repository and find the tools we have specified in the requirements. To run the tools he will simply
follow the README instructions and the output will give insight into potential bug locations and
exploitation techniques.

19

4.3.3 Areas of Concern and Development

One of our largest concerns for this project at this point is exploitation of a bug. This is a very
difficult and complex task that has teams of professional hardware cybersecurity specialists working
on it. We are worried that our skill set does not match that and that our knowledge past a basic
check is lacking while compared to other teams or tools that already exist.

In order to mitigate this concern, we are using the Agile project development model. This allows us
to constantly update our expectations and to ensure that we are focusing our efforts in the correct
areas of the project. We are able to modify our tools and the types of bugs we can detect in order to
maximize our ability to discover and exploit them.

4.4 TECHNOLOGY CONSIDERATIONS

The strengths of our project lie in the realm of system compatibility, availability, and ease of use.
Our project is dependent on Verible and SVLint, but not simulation software. This makes the tools
lightweight and easily compatible with the developers system. Being that it will be open-source, this
will make it easily accessible to any developer who desires to use it. Finally, with good
documentation and intuitive design, these tools will be user friendly and give insightful debugging
information.

The weakness of this project is that it is limited in the categories of bugs it seeks to find and
identify. As displayed earlier in the ideation section of this document, it is displayed that there are
more bugs found in SoCs then our project will be programmed to identify. This means that there is
blind spots and the developer that seeks to use this completed project should be aware that this
project is only one set of tools to find bugs but is not a catch-all of all system issues.

One trade off we made initially was in our primary language selection. We decided to start working
in Java for several reasons. Although other languages, like C based languages, may be faster
concerning runtime and often easier to develop on Linux environments, we chose Java because all
our team members have a large amount of experience with it due to ISU courses, string
manipulation is easier in Java than C based languages, and the automatic garbage collector in Java
allows us to avoid memory leaks and other issues that could cause problems in a large code base.

One alternative design was to use hardware fuzzing to detect bugs. This would’ve used SoC
simulation, and would’ve been able to detect different classes of bugs that our current design
currently does not detect. There are two main reasons we decided not to include fuzzing as part of
our design. The first is that by only using static analysis, our tools will be lightweight and easily
installable by any user. Simulation is more heavyweight and platform dependent. The second main
reason is that after much consideration, we concluded that fuzzing was just not realistic for the
scope of our project. This is due to the amount of time already spent on deciding the scope, as well
as the difficulty of simulating one of the buggy HACK@DAC SoCs.

20

4.5 DESIGN ANALYSIS

To the extent of the understanding of the team, the current design plan is completely operational
and compatible for the goal of the project. Strengths of the plan lie within well thought out
architecture and clearly defined requirements. Up to this point, we have undergone several
iterations for our design, and we anticipate having to iterate more in the future. Throughout the
lifetime of our Agile project plan, we modify our design choices as the team and client see fit.

4.6 DESIGN PLAN

One of the most important requirements of this project is a complete, accurate toolset, so the initial
design plan is to develop and test a single tool before beginning work on the others.

This tool will depend on the signal tracer and SystemVerilog linter (collectively called “cores”), so
we plan to create these first. Integration between the tracer, linter, and tools will begin while
verifying the accuracy of the tracer and linter to maximize concurrent work.

After one tool fulfills its requirements, work may begin concurrently on the other vulnerability
detection tools.

Below is a dependency diagram of the project’s internal components. In this diagram, each tier
represents a stage in the development process. We aim to complete both tiers by the end of the
spring semester.

A more thorough schedule of the project implementation can be found in section 6.

21

5 Testing

5.1 UNIT TESTING

The proposed project comprises independently operated tests that each aim to semi automatically
detect different vulnerabilities in SoCs by analyzing their designs in the Register-Transfer Level
(RTL) written in SystemVerilog. Therefore, each tool can be individually tested by intentionally
injecting these vulnerabilities into multiple common, open-source processor designs. If a test can
detect the injected bugs without misidentifying a substantial amount of untouched RTL, the test
meets the expectations listed in section 2.

Despite each tool’s uniqueness, all will share two core units responsible for linting extracting the
structure of the RTL (a core called the signal tracer). This module will be independently, manually
tested on existing projects written in SystemVerilog throughout the development process to ensure
its accuracy.

5.2 INTERFACE TESTING

There are two interfaces:

● between the cores and the RTL. This interface is tested by aggregating a repository of
projects written in SystemVerilog and manually asserting that the structure produced by
the cores match the RTL.

● between the tools and a user. There are minimal requirements for this interface, but we
continuously work with the client to assess the efficiency of controlling these tests.

5.3 INTEGRATION TESTING

The only required integration is between the cores and the tools. The units are so tightly coupled
with the parser that any testing method on the modules will validate the integration of the cores.

5.4 SYSTEM TESTING

Each bug detection tool is independent of the others, so testing each module individually validates
the whole system.

5.5 REGRESSION TESTING

New bug detection tools will not break others due to their independence. Updates to existing tools
will be unit-tested per section 5.1.

22

5.6 ACCEPTANCE TESTING

Our final design will be compared against the requirements document that we developed early in
the semester. Weekly meetings with the client assert that the project continues to satisfy the
non-functional requirements.

5.7 RESULTS

The end goal of our project is to detect bugs in an SoC design. The bug detection tools we intend to
create are based on the list of given bugs from the HACK@DAC 2018 competition, so a good
measurement of our project’s success would be what proportion of these bugs our tools can locate.
Another strong metric of success is how effectively the tools assist in the exploitation of these bugs.
If our tools give useful information that allows for exploiting many bugs, the quality of our project
results will be very high.

6 Implementation
Our plan moving forward next semester:

● Stage 1 (~2 weeks): Finish implementing and testing the linter and signal tracer. Simulate
the HACK@DAC 2018 competition RTL to test the system

● Stage 2 (~2 weeks): Test the signal tracer with mocking and/or against the 2018 SoC RTL.
Implement a tool that detects missing default case statements

● Stage 3 (~4 weeks): Implement tools that detect:

○ Signals that don’t change

○ Memory address overlaps

● Stage 4: (~2 weeks): Test the tools developed in stage three

● Stage 5: (~6 weeks): Continue developing and testing new bug detection tools to aid in
detection/exploitation of bugs through Agile process

23

7 Professionalism

7.1 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

The standard of professionalism that we have decided to use for our project follows the IEEE
standard. The following is the explanation of how each area applies to our project.

Work Competence:

The area of work competence is incredibly important to our project, in fact, it is arguably most
important. The reason for this is because our project deals with the verification of system
standards. If a system standard is violated, that is a bug that we need to find. We are tasked
with designing software that detects these discrepancies within SoCs and enables the
programmer to be more effective in his debugging practices. Consequently, the programmer
needs to be able to trust our work. The code of our project must consistently perform to
standard and enable the user to be more effective, without having to question our work.

Financial Responsibility:

The area of financial responsibility is of little to no concern to our group. The project itself is
nonprofit and there are currently no plans to market or sell the product. All members of the
team are working for the sake of a job well done and not a payment and therefore there is little
to no thought of monetary gain or transaction.

Communication Honesty:

The area of communication honesty is fundamental to the progress of development. Within our
project we are all learning about the HACK@DAC and the process of how to find bugs
effectively. It is important that we honestly bring our skills to the table as well as our
shortcomings. Our stakeholder is our faculty advisor and ultimately, one of the greatest assets
we have for success. The more honest we are in communicating the progress we have made in
the project, the more he can help us develop better solutions. Finally, it is also crucial that we as
teammates are honest with each other. We each bring a unique set of skills and experiences to
the table which, in collaboration, can develop more holistic solutions.

Health, Safety, Well-being:

Health, Safety, and Well-being are important to the project as we develop solutions. As far as
the project is concerned, there isn’t much direct impact for users or developers in the realm of
safety and health. However, it is of significance as we consider off-nominal scenarios in our
requirements development and as we proceed in current development. We endeavor to
consider the health of a team member and/or stakeholder to be a direct factor in the health of
the team.

24

Property Ownership:

Ethics to do with Property Ownership is fundamental to the success of any software
development project and therefore it is incredibly relevant to this project. As we uncover and
develop our own solutions to current issues we need to be aware of where our ideas and
solutions are coming from. We need to respect the rights individuals have towards their own
ideas and rightly give them credit. Within our project, we rightly are sorting through many
open source solutions but it is still very crucial to the success of the project that we maintain a
proper respect and understanding of the use of these projects.

Sustainability:

N/A

Social Responsibility:

Social Responsibility is important to the project as it is designed to benefit society and improve
the process of finding bugs within the SoC designs. Upon success, it will improve the workflow
of SoC chip designers and HACK@DAC participants.

7.2 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Within the project, the proficiency and the impact are in the realm of Work Competence. In the
IEEE standards of ethics, section 5 says “To improve the understanding of technology; its
appropriate application, and potential consequences” This pertains the work competence in that it
exemplifies that working well is continuously learning about your project and knowing how it
impacts other systems and individuals. This statement highlights our project, in that our goal is to
know SoC designs, apply them appropriately, and display potential consequences of bugs.The goal
of the project is to ultimately improve the work competence of the average HACK@DAC participant.
Not only have ethics in work competence been a leading driver in the vision of the project but they
also have been invaluable to the team. The team has displayed work competence in demonstrating
understanding and aptitude in individual areas of expertise and this has contributed to quality
mutual understanding and shared goals. These shared goals have been foundational in ensuring
that work contributed has been timely and efficient.

25

8 Closing Material

8.1 DISCUSSION

Below is a prototype of the process we plan on using to detect and exploit bugs:

1. Since we know there is an issue inside the file riscv_alu.sv in the 2018 HACK@DAC SoC, we
can input that file to SVLint.

2. The output given by SVLint indicates that it can detect the bug we are looking for:

3. Using a prototype program we have written, we can build a dependency tree of the Verilog
modules in the 2018 SoC design.

4. Then we can trace the signal vector_mode_i through the SoC design using the same program
prototype:

26

5. Bug 14 in the Bug Classification list (see Appendix) can be activated by resetting the SoC, then
immediately using an ABS instruction. The reset causes the value of vector_mode_i to be set
to a predefined value of VEC_MODE32. The ABS instruction does not alter the value of
vector_mode_i, so when the Verilog code for the ALU is executed, the ALU enters an
undefined state.

8.2 CONCLUSION / STEPS TAKEN SO FAR

Our work this semester started with attempting to properly scope our project. To begin, we
classified the list of bugs provided by the 2018 HACK@DAC competition to assist with narrowing
down which types of bugs our team could feasibly detect/exploit.

Next, we began researching and experimenting with different open source RTL tools that we could
use as a part of our design. A Verilog linter we found called SVLint was particularly useful in finding
a specific bug in the 2018 SoC, an undefined default case which causes unpredictable behavior in
the SoC.

Our research of similar tools that currently exist led us to determine that we wanted our tools to be
easy to install and use, open-source, and not require any compilation or simulation of the RTL. As
discussed in section 4.1.3, the other tools we found lacked many or all of these properties. Our goal
is to differentiate our toolset by adhering to these three properties.

During the process of exploring the exploitation of the bug that can be detected by SVLint, we
determined that a program which can build a hierarchy of SoC designs and trace signals through
them would be very useful. Therefore, we began prototyping a tool that could display signals and
modules given a top level file of the SoC. Currently, this prototype gives a 90% accurate
representation of the signal module tree.

We then identified that the signal tracing program would be an incredibly useful asset in detecting
other bugs. Our current design plan involves utilizing the signal tracing program to detect bugs of a
few particular categories.

Our plan of action moving forward is laid out in section 6. Throughout the project, inexperience
among the team members with complex RTL implementations made it an uphill task to make
progress early on in the design process. Our skills and knowledge will become more solid with each
Agile sprint and with each iteration of our design.

27

8.3 REFERENCES

“IEEE Code of Ethics.” IEEE, Institute for Electrical and Electronics Engineers ,
https://www.ieee.org/about/corporate/governance/p7-8.html.

Authored, revised and maintained by many Googlers. Styleguide, Github,
https://google.github.io/styleguide/shellguide.html.

“IEEE POLICIES.” THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC,
30 Sept. 2021.

Seth-Lab-Tamu. “Seth-Lab-Tamu/HACKDAC-2018-Soc: Buggy SOC Used for the Second
Phase of the HACK@DAC 2018 Hardware Security Competition.” GitHub, HACK@DAC,
https://github.com/seth-lab-tamu/hackdac-2018-soc.

“HACK@DAC 2021.” HacKEVENT, HACK@DAC , https://hackatevent.org/hackdac21/.

8.4 APPENDIX

Bug Classification:

https://docs.google.com/spreadsheets/d/1fcpJHAmYbfWzrVyBpebDnIUiYFohVU-G/edit?usp=shari
ng&ouid=102151251018947909307&rtpof=true&sd=true

HACK@DAC 2021 rules:

https://drive.google.com/file/d/1CiYporz7Tc2UxBV5S-gwZ7GSXZSxm1AS/view?usp=sharing

SVLint:

https://github.com/dalance/svlint

Verible:

https://github.com/chipsalliance/verible

28

https://docs.google.com/spreadsheets/d/1fcpJHAmYbfWzrVyBpebDnIUiYFohVU-G/edit?usp=sharing&ouid=102151251018947909307&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1fcpJHAmYbfWzrVyBpebDnIUiYFohVU-G/edit?usp=sharing&ouid=102151251018947909307&rtpof=true&sd=true
https://drive.google.com/file/d/1CiYporz7Tc2UxBV5S-gwZ7GSXZSxm1AS/view?usp=sharing
https://github.com/dalance/svlint
https://github.com/chipsalliance/verible

